Quantum Monte Carlo Seminar Quantum problems of mesoscopic physics

Florian Cartarius

July 15, 2010

Contents

Introduction to Monte Carlo methods

- Monte Carlo
- Importance Sampling
- The Metropolis Method

2 Path Integral Monte Carlo

- Path Integrals
- Identical particles Bosons
- Quantum Monte Carlo on a lattice

What are Monte Carlo methods?

- Monte Carlo methods are a statistical approach to solving integrals.
- The usual methods evaluate integrals on a regular grid.
- Monte Carlo methods choose points at random.

$$I = \int_{a}^{b} dx \ f(x) \approx \frac{b-a}{N} \sum_{i=1}^{N} f(x_i)$$

Monte Carlo Importance Sampling The Metropolis Method

Importance Sampling

► The largest weights of a function are often in a small subinterval, e.g. the partition function $Z = \int dx_1 \cdots dx_N dp_1 \cdots dp_N e^{-\beta E(x_1, p_1, \dots, x_N, p_N)}$.

Importance Sampling samples many points in the region where the integrand is large and few elsewhere.

Crucial reduction of computing time.

Monte Carlo Importance Sampling The Metropolis Method

Markov chains

To generate configurations according to a probability distribution w(x) construct a Markov chain.

New points are generated according to a probability distribution that depends on the current position.

- Solutions have to be ergodic.
- One special solution is detailed balance:

$$w(x)T(x \to x') = w(x')T(x' \to x)$$

Monte Carlo Importance Sampling The Metropolis Method

The Metropolis algorithm

- The Metropolis algorithm is an ergodic solution to the detailed balance condition.
- Split the transition probability into an selection and an acceptance probability.

$$T(x o x') = \omega_{xx'} A_{xx'}$$

Accept the new configuration with the probability

$$A_{xx'} = min\left(1, \frac{\omega_{x'x}w(x')}{\omega_{xx'}w(x)}\right)$$

Example: Simulation of a monatomic gas

In the canonical or (NVT) ensemble the configurations should be weighed according to the Boltzman factor ρ(X) ∝ exp(−βE(X)).

Algorithm for a monatomic gas

- 1 Choose a random particle *i*.
- **2** Calculate a random trial displacement Δx and $x'_i = x_i + \Delta x$.
- 3 Accept the new configuration with probability $min(1, exp(-\beta(U(x'^N) U(r^N)))))$.

• Average of physical quantity $A = \frac{1}{n} \sum_{v=0}^{n} A_v$

Partition functions and density matrices

► In quantum mechanics the density matrix generalizes the classical Boltzmann distribution. The probability $\pi(x)$ of being at position x is given as

$$\pi(x) = \frac{1}{Z} \rho(x, x, \beta)$$
$$\rho(x, x', \beta) = \langle x' | \exp(-\beta \hat{H}) | x \rangle$$
$$Z = Tr(exp(-\beta \hat{H}))$$

An exact solution for the density matrix can only be computed for simple examples (e.g. free particles).

High temperature limit

A simple general expression for the density matrix does not exist.

$$e^{-\beta(\hat{\tau}+\hat{v})}=e^{-\beta\hat{\tau}}e^{-\beta\hat{v}}e^{-\frac{\beta^2}{2}[\hat{\tau},\hat{v}]},$$

 $\text{if } [\hat{T}+\hat{V},[\hat{T},\hat{V}]]=0.$

- Neglecting the operator $[\hat{T}, \hat{V}]$ yields an error of order β^2 .
- For high temperatures (small β) the density matrix can be approximated as:

$$\rho(x,x',\beta) \approx \left\langle x' \left| e^{-\beta \hat{\tau}} \right| x \right\rangle e^{-\beta V(x)}$$

The path integral

► To use the high temperature approximation, devide β in M small fragments $\Delta \tau = \frac{\beta}{M}$.

$$e^{-eta(\hat{ au}+\hat{ extsf{v}})}=\left[e^{-\Delta au(\hat{ au}+\hat{ extsf{v}})}
ight]^M$$

The partition function can be written as

$$\int dx_0 \left\langle x_0 \left| e^{-\beta \hat{H}} \right| x_0 \right\rangle = \int dx_0 dx_1 \dots dx_{M-1} \\ \times \left\langle x_0 \right| e^{-\Delta \tau \hat{H}} |x_1\rangle \langle x_1 | e^{-\Delta \tau \hat{H}} |x_2\rangle \dots \langle x_{M-1} | e^{-\Delta \tau \hat{H}} |x_M\rangle,$$

with $x_M = x_0$.

Path integral representation of the partition function

$$Z = \underbrace{\int \int dx_0 \dots dx_{M-1}}_{\text{sum of paths}} \underbrace{\langle x_0 | e^{-\Delta \tau \hat{H}} | x_1 \rangle \cdots \langle x_{M-1} | e^{-\Delta \tau \hat{H}} | x_M \rangle}_{\text{weight } \pi \text{ of path}}$$

- Quantum system of N particles is equivalent to a classical system of NM particles.
- ► The path integral maps the d-dimensional quantum system to a d+1-dimensional system. The extra dimension corresponds to the index k in x_k , going from 0 to β in steps $\Delta \tau = \frac{\beta}{M}$.

Polymer picture

- Each particle is represented by a ring-polymer.
- Adjacent beads are connected are coupled by a harmonic spring.

$$\rho(x_i, x_j, \beta) = \langle x_j | e^{-\Delta \tau \hat{H}} | x_i \rangle = \frac{1}{(2\pi\Delta \tau)^{3N/2}} e^{-\Delta \tau V(x_j)} e^{-(x_j - x_i)^2/(2\Delta \tau)}$$

 Interatomic forces occur only if the imaginary time index s is the same.

Figure: Representation of two quantum particles in two dimensions.

Simulation of superfluid ⁴He

The interactions between atoms can be described by a pair potential

$$H = -\frac{\hbar}{2m} \sum_{i=1}^{N} \nabla_i^2 + \sum_{i < j} V(|x_i - x_j|) .$$

⁴He atoms have the statistical properties of bosons. For a bosonic system the partition function has the form

$$Z_B = \frac{1}{N!} \sum_{P} \int dX_0 \cdots dX_{M-1} \langle X_0 | e^{-\Delta \tau \hat{H}} | X_1 \rangle \cdots \langle X_{M-1} | e^{-\Delta \tau \hat{H}} | X_M \rangle ,$$

with the new boundary condition $PX_M = X_0$ where P is a permutation of particles.

Simulation of superfluid ⁴He

Paths can close on any permutation of their starting positions.

(a) The trace of six He-Atoms in a box with periodic boundary conditions at 4 K.

(b) At 0.75 K.

Calculating properties

• Particle density:
$$\langle \rho(r) \rangle = \frac{1}{M} \left\langle \sum_{i,m} \delta(r - r_{im}) \right\rangle$$

- Energy: $E = \langle \hat{H} \rangle$
- Specific heat: $C_v = -\beta^2 \frac{dE}{d\beta}$

Figure: Specific heat of ⁴He: solid line, experiment (Wilks, 1967), triangles, PIMC calculations (Ceperlev and Pollock, 1986).

Florian Cartarius

Quantum Monte Carlo

Quantum Ising Model

$$\hat{H} = \underbrace{-J\sum_{\langle ij\rangle}}_{\hat{H}_{1}} \hat{\sigma}_{i}^{z} \hat{\sigma}_{j}^{z} + \underbrace{-\Gamma\sum_{i} \hat{\sigma}_{i}^{x}}_{\hat{H}_{2}}$$

The Mth approximant of the partition function is

$$Z \approx \operatorname{Tr} \left[e^{-\frac{\beta}{M} \hat{H}_{1}} e^{-\frac{\beta}{M} \hat{H}_{2}} \right]^{M}$$
$$= \sum_{\{S_{i}^{k}\}} \prod_{k=1}^{M} \prod_{i=1}^{N} e^{\frac{\beta J}{M} S_{i}^{k} S_{i+1}^{k}} \left\langle S_{i}^{k} \left| e^{\frac{\Gamma \beta}{M} \hat{\sigma}_{i}^{x}} \right| S_{i}^{k+1} \right\rangle$$

System can be mapped to a 2-dimensional classical system.

$$Z = C_m \sum_{\{S_i^k\}} \exp\left[\sum_{k=1}^M \sum_{i=1}^N \left(\frac{\beta J}{M} S_i^k S_{i+1}^k + K_m S_i^k S_i^{k+1}\right)\right]$$

Sampling the Quantum Ising Model

- Attempt to flip the circled spin.
- Calculate the weights before and after the spin flip
- Accept the new configuration with

$$min\left(1, \frac{\pi_{after}}{\pi_{before}}\right) = min\left(1, \frac{e^{K_m - K_m}e^{\frac{\beta J}{M} + \frac{\beta J}{M}}}{e^{-K_m + K_m}e^{-\frac{\beta J}{M} - \frac{\beta J}{M}}}\right) = 1$$

Modifications

The model can easily be extended to higher dimensions.

The ferromagnetic interactions and the magnetic fields can be chosen randomly.

$$\hat{H} = -\sum_{\langle ij
angle} J_{ij} \hat{\sigma}_i^z \hat{\sigma}_j^z - \sum_i \Gamma_i \hat{\sigma}_i^x$$

Summary

- Monte Carlo methods rely on repeated random sampling, and are useful for systems witch a large number of degrees of freedom.
- Importance Sampling increases the efficiency of Monte Carlo methods.
- The path integral method allows to sample quantum system configurations with the appropriate Boltzman factor.
- For bosonic systems we have to sample the path space and the permutation space.