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What are Monte Carlo methods?

I Monte Carlo methods are a statistical approach to solving integrals.

I The usual methods evaluate integrals on a regular grid.

I Monte Carlo methods choose points at random.

I =
∫ b

a
dx f (x)≈ b−a

N

N

∑
i=1

f (xi)

Florian Cartarius Quantum Monte Carlo



Introduction to Monte Carlo methods
Path Integral Monte Carlo

Monte Carlo
Importance Sampling
The Metropolis Method

Importance Sampling

I The largest weights of a function are often in a small subinterval, e.g.
the partition function Z =

∫
dx1 · · ·dxNdp1 · · ·dpNe−βE(x1,p1,...,xN ,pN ).

I Importance Sampling samples many points in the region where the
integrand is large and few elsewhere.

I Crucial reduction of computing time.
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Markov chains

I To generate configurations according to a probability distribution
w(x) construct a Markov chain.
New points are generated according to a probability distribution that
depends on the current position.

I Solutions have to be ergodic.

I One special solution is detailed balance:

w(x)T (x → x ′) = w(x ′)T (x ′→ x)
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The Metropolis algorithm

I The Metropolis algorithm is an ergodic solution to the detailed
balance condition.

I Split the transition probability into an selection and an acceptance
probability.

T (x → x ′) = ωxx ′Axx ′

I Accept the new configuration with the probability

Axx ′ = min

(
1,

ωx ′xw(x ′)
ωxx ′w(x)

)
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Example: Simulation of a monatomic gas

I In the canonical or (NVT) ensemble the configurations should be
weighed according to the Boltzman factor ρ(X) ∝ exp(−βE(X)).

Algorithm for a monatomic gas

1 Choose a random particle i .

2 Calculate a random trial displacement ∆x and x ′i = xi + ∆x .

3 Accept the new configuration with probability
min
(
1,exp(−β (U(x ′N)−U(rN)))

)
.

I Average of physical quantity A = 1
n ∑

n
ν=0 Aν
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Partition functions and density matrices

I In quantum mechanics the density matrix generalizes the classical
Boltzmann distribution. The probability π(x) of being at position x is
given as

π(x) =
1
Z

ρ(x ,x ,β )

ρ(x ,x ′,β ) =
〈
x ′
∣∣exp(−β Ĥ)

∣∣x〉
Z = Tr(exp(−β Ĥ))

I An exact solution for the density matrix can only be computed for
simple examples (e.g. free particles).
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High temperature limit

I A simple general expression for the density matrix does not exist.

e−β(T̂+V̂) = e−β T̂ e−β V̂ e−
β2

2 [T̂ ,V̂ ],

if [T̂ + V̂ , [T̂ , V̂ ]] = 0.

I Neglecting the operator [T̂ , V̂ ] yields an error of order β 2.

I For high temperatures (small β ) the density matrix can be
approximated as:

ρ(x ,x ′,β )≈
〈

x ′
∣∣∣e−β T̂

∣∣∣x〉 e−βV(x)
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The path integral

I To use the high temperature approximation, devide β in M small
fragments ∆τ = β

M .

e−β(T̂+V̂) =
[
e−∆τ(T̂+V̂)

]M

I The partition function can be written as∫
dx0

〈
x0

∣∣∣e−β Ĥ
∣∣∣x0

〉
=
∫

dx0dx1 . . .dxM−1

×〈x0|e−∆τĤ |x1〉〈x1|e−∆τĤ |x2〉 · · · 〈xM−1|e−∆τĤ |xM〉,
with xM = x0.
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Path integral representation of the partition function

Z =
∫ ∫

dx0 . . .dxM−1︸ ︷︷ ︸
sum of paths

〈x0|e−∆τĤ |x1〉 · · · 〈xM−1|e−∆τĤ |xM〉︸ ︷︷ ︸
weight π of path

I Quantum system of N particles is equivalent to a classical system of
NM particles.

I The path integral maps the d-dimensional quantum system to a
d+1-dimensional system. The extra dimension corresponds to the
index k in xk , going from 0 to β in steps ∆τ = β

M .

Florian Cartarius Quantum Monte Carlo



Introduction to Monte Carlo methods
Path Integral Monte Carlo

Path Integrals
Identical particles - Bosons
Quantum Monte Carlo on a lattice

Polymer picture

I Each particle is represented by a ring-polymer.
I Adjacent beads are connected are coupled by a harmonic spring.

ρ(xi ,xj ,β ) = 〈xj |e−∆τĤ |xi〉=
1

(2π∆τ)3N/2
e−∆τV(xj )e−(xj−xi )

2/(2∆τ)

I Interatomic forces occur only if the imaginary time index s is the
same.

Figure: Representation of two quantum particles in two dimensions.
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Simulation of superfluid 4He

I The interactions between atoms can be described by a pair potential

H =− h̄
2m

N
∑

i=1
∇2

i + ∑
i<j

V (|xi − xj |) .

I 4He atoms have the statistical properties of bosons. For a bosonic
system the partition function has the form

ZB =
1

N! ∑
P

∫
dX0 · · ·dXM−1〈X0|e−∆τĤ |X1〉 · · · 〈XM−1|e−∆τĤ |XM〉 ,

with the new boundary condition PXM = X0 where P is a
permutation of particles.
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Simulation of superfluid 4He

I Paths can close on any permutation of their starting positions.

(a) The trace of six He-Atoms in a box with
periodic boundary conditions at 4 K.

(b) At 0.75 K.
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Calculating properties

I Particle density: 〈ρ(r)〉= 1
M

〈
∑
i,m

δ (r − rim)

〉
I Energy: E = 〈Ĥ〉
I Specific heat: Cv =−β 2 dE

dβ

Figure: Specific heat of 4He: solid line, experiment (Wilks, 1967), triangles,
PIMC calculations (Ceperley and Pollock, 1986).
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Quantum Ising Model

Ĥ =−J ∑
〈ij〉

σ̂
z
i σ̂

z
j︸ ︷︷ ︸

Ĥ1

+−Γ∑
i

σ̂
x
i︸ ︷︷ ︸

Ĥ2

I The Mth approximant of the partition function is

Z ≈ Tr
[
e−

β

M Ĥ1e−
β

M Ĥ2

]M

= ∑
{Sk

i }

M

∏
k=1

N

∏
i=1

e
βJ
M Sk

i Sk
i+1

〈
Sk

i

∣∣∣e Γβ

M σ̂ x
i

∣∣∣Sk+1
i

〉
I System can be mapped to a 2-dimensional classical system.

Z = Cm ∑
{Sk

i }
exp

[
M

∑
k=1

N

∑
i=1

(
βJ
M

Sk
i Sk

i+1 + KmSk
i Sk+1

i

)]
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Sampling the Quantum Ising Model

I Attempt to flip the circled spin.
I Calculate the weights before and after the spin flip
I Accept the new configuration with

min

(
1,

πafter

πbefore

)
= min

(
1,

eKm−Km e
βJ
M + βJ

M

e−Km+Km e−
βJ
M −

βJ
M

)
= 1
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Modifications

I The model can easily be extended to higher dimensions.

I The ferromagnetic interactions and the magnetic fields can be
chosen randomly.

Ĥ =−∑
〈ij〉

Jij σ̂
z
i σ̂

z
j −∑

i
Γi σ̂

x
i
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Summary

I Monte Carlo methods rely on repeated random sampling, and are
useful for systems witch a large number of degrees of freedom.

I Importance Sampling increases the efficiency of Monte Carlo
methods.

I The path integral method allows to sample quantum system
configurations with the appropriate Boltzman factor.

I For bosonic systems we have to sample the path space and the
permutation space.
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